

· DÉSENFUMAGE NATUREL

• ÉCLAIREMENT ZÉNITHAL

SKYBAIE® O.S. MÉCANIQUE

LES ATOUTS

Poulie orientable multidirectionnelle avec possibilité d'asservir vers la droite ou la gauche de l'appareil sans intervenir sur l'appareil

Mécanisme simple et accessible pour une maintenance aisée

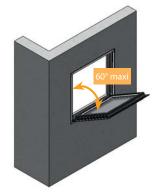
Appareil livré avec 20 ml de câble en série

Poulie protégée par un carter de la couleur du châssis

Éjecteur et mécanisme intégrés et invisibles en position fermée

OPTIONS ET FINITIONS

Options


- Contacteurs de position d'attente ou de sécurité (option certifiée)
- Possibilité de bicoloration : nous consulter
- Vitrages spéciaux sur demande : antieffraction, contrôle solaire, sérigraphié, traitement acoustique, etc.

Finitions

- Laquage dans les teintes RAL standards
- Anodisation dans les teintes RAL standards
- Label Qualicoat / Qualimarine

TYPE ET ANGLE D'OUVERTURE

- Type d'ouverture : abattant extérieur
- Angle d'ouverture : 60° maxi
- Inclinaison maxi : 5° par rapport à la verticale

GAMME DIMENSIONNELLE

- Maxi: 1600 x 1600 mm et 2400 x 1200 mm
- Mini : 500 x 500 mm
- Poids: 70 Kg maximum (ouvrant compris)

— CARACTÉRISTIQUES DU DÉCLENCHEMENT

- Le déclenchement manuel est composé d'un ou deux blocs verrou (en fonction des dimensions du châssis).
- La course de déclenchement du câble est de 30 mm ($\pm 10\%$) et la résistance dynamique est < à 1 daN.
- Dans l'hypothèse d'un châssis comportant deux blocs verrou, ceux-ci sont reliés pour un déclenchement simultané.

- PERFORMANCES THERMIQUES ET ACOUSTIQUES

Type de remplissage	Transmission lumineuse TL* (%)	Facteur solaire g* (%)	Poids du remplissage (Kg/m²)	Transmission thermique du remplissage Ug (W/m².K)	Affaiblissement acoustique du remplissage R _w (C;C _t ,)*	Affaiblissement acoustique du châssis R _w (C;C _t ,)		
33.2 – 16(Air) – 4	81	72	26	2.7	$R_{w} = 35(-1;-5) \text{ dB}$ $R_{A,tr} = 30 \text{ dB}$	R _w =36(-4;-8)		
44.2 – 16(Air) – 4	81	71	31	2.7	$R_{w} = 37(-2;-6) \text{ dB}$ $R_{A,tr} = 31 \text{ dB}$	R _w =36(-2;-6)		
44.2 – 16(Air) – 6	80	70	36	2.7	$R_{w} = 37(-1;-3) \text{ dB}$ $R_{A,tr} = 34 \text{ dB}$	R _w =36(-2;-6)		
33.2 FE – 16 (Argon 90%) – 4	81	56	26	1.1	$R_{w} = 35(-1;-5) dB$ $R_{A,tr} = 30 dB$	R _w =36(-4;-8)		
44.2 FE – 16 (Argon 90%) – 4	80	55	31	1.1	$R_{w} = 37(-2;-6) \text{ dB}$ $R_{A,tr} = 31 \text{ dB}$	R _w =36(-2;-6)		
44.2 FE – 16 (Argon 90%) – 6	80	55	36	1.1	$R_{w} = 37(-1;-3) dB$ $R_{A,tr} = 34 dB$	R _w =36(-2;-6)		
44.2 FE 1.0 – 16 (Argon 90%) – 6	75	47	36	1.0	$R_{w} = 37(-1;-3) \text{ dB}$ $R_{A,tr} = 34 \text{ dB}$	R _w =36(-2;-6)		
44.2 CS 70/40 – 16 (Argon 90%) – 6	69	36	36	1.0	$R_{w} = 37(-1;-3) dB$ $R_{A,tr} = 34 dB$	R _w =36(-2;-6)		
44.2 Ac. FE 1.0 – 20 (Argon 90%) – 66.2 Ac.	73	47	52	1.0	$R_{w} = 49(-2;-8) \text{ dB}$ $R_{A,tr} = 41 \text{ dB}$	$R_{w} = 43(-1;-2) \text{ dB}$ $R_{A,tr} = 41 \text{ dB}$		
66.2 Ac. FE 1.0 – 16 (Argon 90%) - 66 .2 Ac.	71	45	62	1.0	$R_{w} = 51(-2;-6) \text{ dB}$ $R_{A,tr} = 45 \text{ dB}$	$R_{w} = 44(-1;-3) \text{ dB}$ $R_{A,tr} = 41 \text{ dB}$		
Panneau SKYDÔME	-	-	50	1.35	-	$R_{w} = 41(0;-2) dB$ $R_{A,tr} = 39 dB$		
Panneau SKYDÔME + masse lourde intégrée	-	-	50	1.35	-	$R_{w} = 42(-1;-2) \text{ dB}$ $R_{A,tr} = 40 \text{ dB}$		

SKYBAIE® O.S. MÉCANIQUE

- SURFACE LIBRE (m²) ET SUE (m²)

Valeurs pour un angle de 60°

			Largeur (mm)																		
		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
										Sı	ırface l	ibre (m	1 ²)								
Hauteur (mm)	500	0.11	0.14	0.17	0.21	0.24	0.27	0.31	0.34	0.37	0.40	0.43	0.46	0.48	0.51	0.54	0.57	0.60	0.63	0.66	0.68
	600	0.14	0.18	0.23	0.27	0.31	0.36	0.40	0.44	0.49	0.53	0.57	0.61	0.65	0.69	0.72	0.76	0.80	0.84	0.87	0.91
	700	0.17	0.23	0.28	0.33	0.39	0.44	0.49	0.55	0.60	0.65	0.70	0.76	0.81	0.86	0.92	0.96	1.00	1.05	1.10	1.15
	800	0.21	0.27	0.33	0.40	0.46	0.52	0.59	0.65	0.71	0.77	0.84	0.90	0.96	1.03	1.09	1.15	1.22	1.28	1.33	1.39
	900	0.24	0.31	0.39	0.46	0.53	0.61	0.68	0.75	0.82	0.90	0.97	1.04	1.12	1.19	1.26	1.34	1.41	1.48	1.55	1.63
	1000	0.27	0.36	0.44	0.52	0.61	0.69	0.77	0.85	0.94	1.02	1.10	1.19	1.27	1.35	1.44	1.52	1.60	1.68	1.77	1.85
autei	1100	0.31	0.40	0.49	0.59	0.68	0.77	0.86	0.96	1.05	1.14	1.24	1.33	1.42	1.52	1.61	1.70	1.79	1.89	1.98	2.07
Ī	1200	0.34	0.44	0.55	0.65	0.75	0.85	0.96	1.06	1.16	1.27	1.37	1.47	1.58	1.68	1.78	1.88	1.99	2.09	2.19	2.30
	1300	0.37	0.49	0.60	0.71	0.82	0.94	1.05	1.16	1.28	1.39	1.50	1.62	1.73	1.84	1.95	2.07	2.18	2.29		
	1400	0.41	0.53	0.65	0.77	0.9	1.02	1.14	1.27	1.39	1.51	1.64	1.76	1.88	2.00	2.13					
	1500	0.44	0.57	0.70	0.84	0.97	1.10	1.24	1.37	1.50	1.64	1.77	1.90	2.03	2.17						
	1600	0.47	0.61	0.76	0.90	1.04	1.19	1.33	1.47	1.62	1.76	1.90	2.04								
Aa (m²)																					
	500	0.10	0.11	0.13	0.15	0.17	0.18	0.20	0.22	0.24	0.26	0.27	0.29	0.31	0.33	0.34	0.36	0.38	0.40	0.41	0.43
	600	0.11	0.14	0.17	0.19	0.21	0.23	0.25	0.27	0.30	0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.49	0.50	0.53
	700	0.13	0.17	0.20	0.23	0.26	0.28	0.31	0.33	0.35	0.38	0.40	0.43	0.45	0.48	0.50	0.52	0.55	0.57	0.60	0.63
	800	0.15	0.19	0.23	0.27	0.30	0.33	0.36	0.39	0.42	0.45	0.48	0.50	0.53	0.55	0.59	0.61	0.63	0.67	0.70	0.72
Œ	900	0.17	0.21	0.26	0.30	0.34	0.38	0.42	0.45	0.49	0.51	0.54	0.57	0.60	0.64	0.67	0.69	0.73	0.76	0.79	0.83
Hauteur (mm)	1000	0.18	0.23	0.28	0.33	0.38	0.43	0.47	0.51	0.55	0.59	0.62	0.65	0.69	0.73	0.76	0.79	0.83	0.86	0.90	0.93
aute	1100	0.20	0.25	0.31	0.36	0.42	0.47	0.52	0.57	0.61	0.66	0.71	0.74	0.78	0.82	0.85	0.88	0.93	0.96	0.99	1.04
Ξ.	1200	0.22	0.27	0.39	0.39	0.45	0.51	0.57	0.63	0.68	0.72	0.78	0.82	0.87	0.91	0.94	0.98	1.03	1.07	1.12	1.15
	1300	0.24	0.30	0.35	0.42	0.49	0.55	0.61	0.68	0.74	0.79	0.84	0.90	0.93	0.98	1.02	1.08	1.11	1.15		
	1400	0.26	0.32	0.38	0.45	0.51	0.59	0.66	0.72	0.79	0.86	0.92	0.97	1.02	1.06	1.11	1.15				
	1500	0.27	0.34	0.40	0.48	0.54	0.62	0.71	0.78	0.84	0.92	0.99	1.05	1.10	1.15						
	1600	0.29	0.36	0.43	0.50	0.57	0.65	0.74	0.82	0.90	0.97	1.05	1.12								

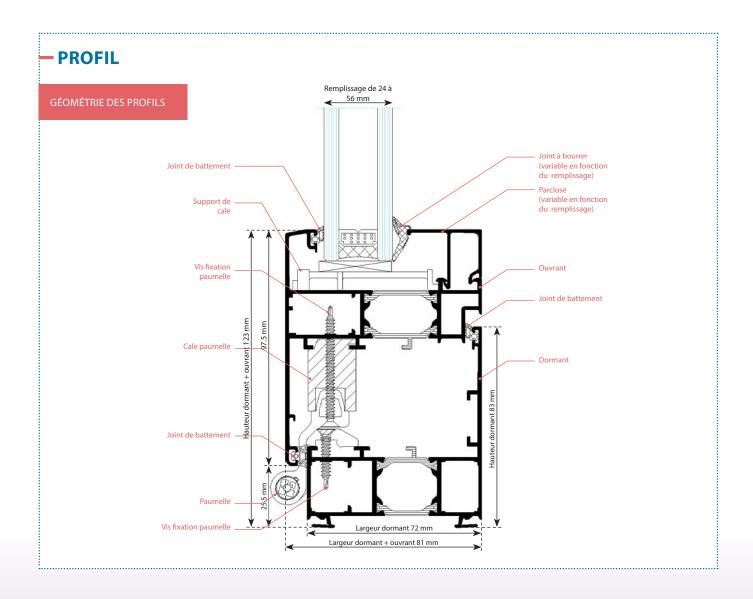
- PERFORMANCES ET CLASSIFICATION

Fonctionnement : type A (ouverture seule)

Surface utile: Aa

Coefficient aéraulique : $0.5 \le Cv \le 0.88$

Résistance à la chaleur : B₃₀₀


Fiabilité: Re 1000

Tenue statique au vent : WL 1500 Basse température : T (00) Classement AEV : A*2 - E*9A - V*C2

- CERTIFICATIONS CE ET NF

- Les ouvrants SKYBAIE sont conformes aux normes NF S 61937-1, NF S 61937-8 et à la norme 12101-2:2003.
- N° de certification CE : 0333-CPR-219086
- N° de certification NF : 11/12.02

— DÉTAILS TECHNIQUES

www.skydome.eu

info@skydome.eu

